A readily obtainable in vitro paradigm of the blood–brain barrier (BBB) would offer considerable benefits. Toward this end, in this study, we describe a novel method for purifying murine brain microvascular endothelial cells (BMEC) for culture. The method uses limited collagenase–dispase digestion of enriched brain microvessels, followed by immunoisolation of digested, microvascular fragments by magnetic beads coated with antibody to platelet–endothelial cell adhesion molecule-1. When plated onto collagen IV–coated surfaces, these fragments elaborated confluent monolayers of BMEC that expressed, as judged by immunocytochemistry, the adherens junction–associated proteins, VE-cadherin and β-catenin, as well as the tight junction (TJ)–associated proteins, claudin-5, occludin, and zonula occludin-1 (ZO-1), in concentrated fashion along intercellular borders. In contrast, cultures of an immortalized and transformed line of murine brain capillary–derived endothelial cells, bEND.3, displayed diffuse cytoplasmic localization of occludin and ZO-1. This difference in occludin and ZO-1 staining between the two endothelial cell types was also reflected in the extent of association of these proteins with the detergent-resistant cytoskeletal framework (CSK). Although both occludin and ZO-1 largely partitioned with the CSK fraction in BMEC, they were found predominantly in the soluble fraction of bEND.3 cells, and claudin-5 was found associated equally with both fractions in BMEC and bEND.3 cells. Moreover, detergent-extracted cultures of the BMEC retained pronounced immunostaining of occludin and ZO-1, but not claudin-5, along intercellular borders. Because both occludin and ZO-1 are thought to be functionally coupled to the detergent-resistant CSK and high expression of TJs is considered a seminal characteristic of the BBB, these results impart that this method of purifying murine BMEC provides a suitable platform to investigate BBB properties in vitro.